ترجمه خطرات زیست محیطی مهندسی ژنتیک

8830 کلمه کشاورزی محیط زیست صنایع مدیریت ترجمه انگلیسی به فارسی، دانشگاه، پژوهش مقاله انگلیسی به همراه مقاله فارسی در قالب آفیس قابل ویرایش به همراه ترجمه شکل و جدول هر 250 کلمه 1 صفحه میباشد منظور از 250 کلمه تعداد کلمات در متن انگلیسی هست و تعداد صفحات بر اساس آن نوشته شده است قیمت این ترجمه در بازار به ازا هر صفحه 3000 تا 5000 تومان م
دسته بندی پژوهش ها
بازدید ها 1
فرمت فایل docx
حجم فایل 195 کیلو بایت
تعداد صفحات فایل 35
ترجمه خطرات زیست محیطی مهندسی ژنتیک

فروشنده فایل

کد کاربری 19093
کاربر

نمونه ترجمه

قبل از ورود به دنیای تجارت، موجودات دستکاری شده ممکن است در ابتدا برای خطراتی، مثل خطرات زیست محیطی ارزیابی شود. در مقاله حاضر ابتدا خطرات زیست محیطی به رسمیت شناخته شده توسط تنظیم کننده شناسایی شده و پارامترهای در نظر گرفته برای پیش بینی خطرات بررسی می­شود. آخرین مطالعات در مقیاس میدانی فرصتی را برای بهبود فرایند ارزیابی ریسک زیست محیطی فراهم نموده است. خطرات منحصر به فرد محصولات مهندسی ژنتیک - در صورت وجود - می تواند مربوط به صفات خاص منتخب برای تجاری سازی و برای بیان صفت ناخواسته ناشی از روند درج ژنی مربوط به آن باشد. هر دو استاندارد یعنی مقایسه صفات مهندسی ژنتیک و مقیاس نیاز در معرض قرار گرفتن را باید در ارزیابی اثرات زیست محیطی درنظر گرفت. مدارک و شواهد خطر زیست محیطی در زمین­های پوشیده از علف هرز کشاورزی، تهاجم سیستم های مدیریت نشده و اثرات غیر هدف باکتری Bacillus thuringiensis (BT) در ذرت ارائه شده است. صدای هدفمند، آماری، دقت انجام شده، مطالعات چند تغذیه­ای شبیه به ارزیابی با مقیاس میدانی، اخیرا در انگلستان کامل شده و نیاز به روشن شدن بسیاری از سوالات پاسخ داده نشده دارد.

Before release into commerce, genetically engineered organisms are first assessed for possible risks, including risks
to the environment. The present paper first identifies the environmental risks recognized by regulators, and reviews
the parameters considered predictive of risk. Recent field-scale studies suggest opportunities for improvement of the
environmental risk assessment process. Risks unique to genetically engineered crops – if any – could pertain to the
specific traits chosen for commercialization and to unintended trait expression caused by the process of transgene
insertion itself. Both the standard against which to compare genetically engineered traits and the scale of exposure
need to be considered when assessing environmental impact. Evidence of environmental risk in the recognized
areas of weediness on agricultural land, invasiveness of unmanaged systems, and non-target impacts from Bacillus
thuringiensis (Bt) maize is presented. Targeted, statistically sound, rigorously conducted, multi-trophic studies
analogous to the Field Scale Evaluation trials recently completed in the UK are needed to clarify the many questions
which remain unanswered.


رابطه هوش مصنوعی، معادله مارکوف، ژنتیک و منطق فازی

فهرست مطالب عنوان صفحه مقدمه 1 فصل اول کلیت تحقیق 11 هوش مصنوعی چیست؟ 3 111 آزمون تورینگ 4 12 منطق فازی 4 121 بازتابی از منطق فازی 4 122 سیستم های فازی 5 123 تصمیم گیری فازی 6 124 هوش مصنوعی و رباتیک 6 13 مدلهای مخفی مارکوف 6 1 31 معرفی مدلها
دسته بندی هوش مصنوعی
بازدید ها 0
فرمت فایل pdf
حجم فایل 3530 کیلو بایت
تعداد صفحات فایل 160
رابطه هوش مصنوعی، معادله مارکوف، ژنتیک و منطق فازی

فروشنده فایل

کد کاربری 26390
کاربر

چکیده

انسان ها از آغاز خلقت به دنبال یکی از هزاران گمشده های خود یعنی آسایش بوده اند و هستند و به همین دلیل تلاش خود را بر آن داشتند تا با پیشرفت روز به روزی در علم، و با تبدیل کردنش به تکنولوژی ، آن را به خدمت خود در بیاورند و هرچه بیشتر خود را غرق در آرامش و راحتی ببینند و به همین دلیل دست به طراحی وسایل گوناگون با طرح ها و ویژگی های متفاوت زدند و این روند تا آنجا پیشرفت که تصمیم گرفتند ، انسان جای خود را به تکنولوژی بدهد اما خیلی زود متوجه شدند ،تکنولوژیی که می خواهد جای انسان را تا حدی پر کند فاقد مهم ترین ویژگی انسان است و آن قدرت تصمیم گیری و انتخاب هوشمندانه است و از آن موقع بود که شاخه جدیدی در علم کامپیوتر و الکترونیک به نام هوش مصنوعی پدید آمد و در اواخر قرن بیستم بود که به یک بحث و موضوع مهم تبدیل شد و تا امروز که در قرن بیست و یکم قرار داریم ادامه دارد و روز به روز تکمیل تر می شود. هوش مصنوعی، یک رشته از علم کامپیوتر می‌باشد که طراحی و توسعه سیستم‌های کامپیوتری را مورد مطالعه قرار می‌دهد که از هوش انسان، تقلید می‌کنند.

هنوز تعریف دقیقی که مورد قبول همه دانشمندان این علم باشد برای هوش مصنوعی ارائه نشده است و این امر به هیچ وجه مایه تعجب نیست؛ چرا که مقوله مادر و اساسی تر از آن یعنی خود هوش هم هنوز به طور همه جانبه و فراگیر تن به تعریف نداده است.

الگوریتم ژنتیک (Genetic Algorithm - GA) تکنیک جستجویی در علم رایانه برای یافتن راه‌حل تقریبی برای بهینه‌سازی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریتم‌های تکامل است که از تکنیک‌های زیست‌شناسی فرگشتی مانند وراثت و جهش استفاده می‌کند.

پرفسور لطفی زاده در سال ۱۹۶۵ برای اولین بار با معرفی نظریه مجموعه های فازی مقدمات مدل سازی اطلاعات نادقیق و استدلال تقریبی با معادله های ریاضی را فراهم نمود که در نوع خود تحولی عظیم در ریاضیات و منطق کلاسیک بوجود آورد. لذا نظریه فازی برای بیان و تشریح عدم قطعیت و عدم دقت در رویدادها به کار می رود که براساس منطق چند ارزشی بوجود آمده است.

مدل مخفی مارکوف در اواخر دهه 1960 میلادی معرفی گردید و در حال حاضر به سرعت در حال گسترش دامنه کاربردها می باشد. دو دلیل مهم برای این مساله وجود دارد. اول اینکه این مدل از لحاظ ساختار ریاضی بسیار قدرتمند است و به همین دلیل مبانی نظری بسیاری از کاربردها را شکل داده است. دوم اینکه مدل مخفی مارکوف اگر به صورت مناسبی ایجاد شود می تواند برای کاربردهای بسیاری مورد استفاده قرار گیرد.


مقاله بهینه سازی منبع با استفاده از شبیه‌سازی ترکیب یافته و الگوریتم ژنتیک

مقاله بهینه سازی منبع با استفاده از شبیه‌سازی ترکیب یافته و الگوریتم ژنتیک در 27 صفحه ورد قابل ویرایش
دسته بندی علوم پزشکی
بازدید ها 1
فرمت فایل doc
حجم فایل 77 کیلو بایت
تعداد صفحات فایل 27
مقاله بهینه سازی منبع با استفاده از شبیه‌سازی ترکیب یافته و الگوریتم ژنتیک

فروشنده فایل

کد کاربری 2102
کاربر

مقاله بهینه سازی منبع با استفاده از شبیه‌سازی ترکیب یافته و الگوریتم ژنتیک در 27 صفحه ورد قابل ویرایش

خلاصه

این مقاله، توسط ترکیب کردن فلوچارت ( نمودار گردش کار) براساس ابراز شبیه سازی با یک روش بهینه سازی ژنتیک قدرتمند، یک روش را برای بهینه سازی منبع نشان می دهد.روش ارائه شده، کمترین هزینه،و بیشترین بازده را ارائه میدهد، وبالاترین نسبت سودمندی را در عملکردهای ساخت و تولید فراهم می آورد. به منظور یکپارچگی بیشتر بهینه سازی منبع در طرح ریزی های ساخت،مدلهای شبیه سازی بهینه یافته (GA) الگوریتم های ژنتیکی گوناگون،عموماً با نرم افزارهای مدیریت پروژه بکار رفته شده ادغام می شوند. بنابراین، این مدلها از طریق نرم افزار زمان بندی فعال می شوند و طرح را بهینه می سازند.نتیجه، یک ساختار کاری تقلیل یافته سلسله مراتبی در رابطه با مدلهای همانندی سازی بهینه یافته GA است. آزمایشات گوناگون بهینه سازی با یک سیستم در دو مورد مطالعه، توانایی آن را برای بهینه ساختن منابع در محدوده محدودیتهای واقعی مدلهای همانند سازی آشکار کرد. این الگو برای کاربرد بسیارآسان است و می تواند در پروژه های بزرگ بکار رود. براساس این تحقیق، همانندسازی کامپیوتر وا لگوریتمهای ژنتیک ،می توانند یک ترکیب موثر برای بهبود دادن بازده و صرفه جویی در زمان وساخت و هزینه ها باشند.


مقدمه

این امر کاملاً آشکار شده است که بازده کاری پایین ،عدم آموزش، و کاهش تعداد معاملات، چالشهای بحرانی هستند که صنعت ساختمان( ساخت) با آن روبرو خواهد شد.

بهره دهی یا قدرت تولید در رابطه با مطالعه ها، برای مثال،دلالت بر زمان بیکاری (بیهودة) کاربران در ساخت(تولید) دارد که این زمان از 20 تا 45% متغیر است. این اتلاف وقت ، که از طریق منابع ناکارآمد و طرح ریزیهای غیربسنده( نامناسب) ناشی می شود، تاثیر و پیامد فوق العاده ای در هزینه های ساخت دارد. همچنین، پیماناکاران که مهارتهای مدیریتی منابع کارآمد را ندارند، این رقابت کردن در بازارهای ساخت جهانی که آنها د ر آن فرصتها بسیاری را خواهند یافت، برای آنها کاری بس دشوار خواهد بود.

با ایجاد تجهیزات و نیروی کار برای امر ساخت و تولید، این امر آشکار است که تدبیرهای کاربرد نیروی کار متناوب و کاربرد بهتر از منابع کاری موجود، به منظور بهبود دادن،بهره دهی کاری و کاهش هزینه های ساخت، مورد نیاز است. استفاده کارآمد از منابع پروژه، هزینه های ساخت را برای مالکان و مصرف کنندگان کاهش می دهد، و در عین حال سودمندیهایی را برای پیمانکاران افزایش می دهد. با این وجود،برخی فاکتورها وجود دارند که ،مدیریت منبع را امر دشواری می سازند، این فاکتورها در مراحل زیر توضیح داده شده اند:

- سیاست جداسازی مدیریت منبع:در ادبیات، محققان گوناگون، تعدادی تکنیکها را برای پرداختن به جنبه های فردی مدیریت منبع، همانند تخصیص منبع، سطح بندی منبع، مدیریت نقدینگی، و تجزیه و هزینه و زمان معاملات (TCT) ، ارائه داده اند. مطالعات تالبوت و پترسون(1979) و گاولیش و پیرکون (1991)، برای مثال، به تخصیص منابع مربوط بود ، در حالیکه بررسیهای Easa (1989) و Shah et al (1993) به سطح بندی و تراز کردن منابع می پرداخت روشهای دیگر ، تنها روی تجزیه TCT متمرکز شدند. همانطوریکه این بررسیها سودمند واقع شدند، آنها به ویژگیهای مجزایی پرداختند که یکی پس از دیگری برای پروژه ها بکار برده می شدند ( نه بطور همزمان) . بوسیله پیچیدگی اساسی پروژه ها و مشکلاتی در رابطه با الگوبرداری تمام ویژگیهای ترکیب یافته، تلاش بسیار کمی برای بهینه سازی منابع ترکیب شده به عمل آمد.

- ناکارآمدی الگوریتم های بهنیه سازی سنتی: در چند دهه گذشته ، بهینه سازی منبع سنتی، براساس روشهای ریاضی یا براساس تکنیکهای ذهنی(غیرمستدل) بوده است. روشهای ریاضی ، همانند برنامه ریزیهای عدد صحیح ، خطی، یا برنامه ریزیهای دینامیکی ،برای مشکلات منبع فردی پیشنهاد شده بودند.با این وجود ، روشهای ریاضی از لحاظ محاسبه ای برای هر پروژه واقعی انعطاف ناپذیر بودند که این روش فقط برای سایزهایی از پروژه مناسب می باشد. همچنین ،روشهای ریاضی پیچیده ایشان دستخوش تغییر می شوند وممکن در مطلوبترین وبهینه ترین قرار بگیرند، روشهای ذهنی (غیرمستدل) ، ازسوی دیگر، تجربیات وقوانین thumb را بکار می برند، نه فرمولهای ریاضی سخت ودقیق را. محققان برای تخصیص منبع، مدلهای ذهنی گوناگونی را پیشنهاد نموده اندن،تراز بندی منبع ها،تجزیه TCT، علی رغم سهولتشان ،این روش های ذهنی هنگامی که درشبکه های پروژه ای مختلف بکار برده می شوند ،نتایج گوناگون را اعمال می نمایند ، و برای کمک به انتخاب بهترین روش ذهنی برای کاربرد، هیچ گونه راهنماهای دقیقی وجود ندارد. بنابراین ، آنها نمی توانند راه حلهای بهینه ای را تضمین نمایند. همچنین ،راه حلهای غیرثابت آنها ( غیرپایدار آنها) به تفاوتها وتناقض‌های وسیع، میان قابلیهای محدود شده منبعی نرم افزار در مدیریت پروژه تجاری کمک شایانی کرده اند.

- مشکلاتی که در رابطه با مدلهای همانندسازی: در طی سه دهه گذشته،همانندسازی کامپیوتر، برای حمایت از کاربرد کارآمد منابع ساخت ارائه شده است (معرفی شده است) با این وجود ، محققان، در توانایی آن برای ایجاد تقلیدی (نمودین) فرآیندهای ساخت واقعی در کامپیوترها علاقمند شدند، و کارورها ممکن هدایت این کار را بسیار دشوار بیابند. به عنوان یک ابزار بسیار سودمند برای طرح ریزی منابع، یک تحقیق وسیع برای توسعه مدلهای همانندسازی عملکرد ساخت، بویژه برای کاربرد سیستم چرخه باید هالپین صورت گرفت. هنوز،با این وجود، برخی ابزارهای موجود، نیازمند دانش برنامه ریزی کامپیوتری و زبان همانندسازی، و عدم ادغام با نرم افزار مدیریت پروژه موجود و عدم ادغام با الگوریتم های بهینه سازی را می باشند.

- موجودیت یک ابزار تولیدی جدید ؛توسعه های اخیر در علم کامپیوتر، یک تولید جدیدی از ابزارها را حاصل نموده است، که آن برای استفاده شدن در کاربردهای ساخت بسیار سودمند می باشد. براساس پیشرفتهای اخیر در هوش مصنوعی، یک تکنیک بهینه سازی جدید ، وا لگوریتم های ژنتیک (Gas) پدیدار شده اند. با مکانیزمهای تکامل طبیعی همانندسازی و شایسته ترین مکانیزمهای بقاء ،GAS ،یک تحقیق رندم(تصادفی) رابرای حل بهینه یک مشکل بکار می برد. بوسیله سودمندیهایی حاصله از آنها، Gas بطور موفقیت آمیزی برای حل چندین مشکل مهندسی و مشکلات مدیریت ساخت بکار برده می‌شود. این کاربردها شامل بهینه سازی یک سیاست قیمت افزایی برای پیمانکاران ؛بهینه سازی سقف نگهدارنده(پایه) فولاد؛ زمان بندی و جدول بندی منابع؛بهینه سازی زمان وهزینه معاملات؛ و تخصیص وترازبندی منبع ترکیب شده می باشند.

همچنین،علاوه بر ابزارهای بهینه سازی براساس GA،سیستم های همانندسازی جدید و آسان کاربرد براساس برنامه ریزی های شی گرا، اخیراً ارائه شده است. یک سیستم فرآیند V3 (2000)، یک نرم افزار با هدف عمومی،برای الگو برداری و همانندسازی ارائه شده است. سودمندی اصلی این نرم افزار، نمودار گردش کارآسان آن، براساس قابلیت های الگوبرداری و همچنین موتور همانندسازی شیء گرایآن می باشد.این موتور همانندسازی نرم افزار،انعطاف پذیر است و این امکان را بوجود می آورد که کاربر عناصر الگو برداری اولیه اش را بپذیرد. سودمندی دیگر نرم افزار این است که ،آن همانندسازی را برای شبکه های سنتی فعالیت در فلاش (AOA) بکار برده شده برای زمان بندی پروژه ها بکار می برد. انواع پروژه‌های گوناگون فلاش و گره طراحی می شوند تا شاخه بندی های ساده یا مشروط را در طی همانندسازی امکان پذیر سازند. این اهداف از پیش طرح شده، می توانند با یک تلاش کم برای تولید مدلهای عملی،بدون دانش مبتلی از واژه شناسی همانند شناسی یا برنامه ریزی کامپیوتری به کار برده شوند.

این روش، به بهبود طرح ریزی ساخت و مدیریت منابع، توسط یک سیستم بهینه سازی منبع آسان کاربرد و کارآمد کمک می نماید و این همانند سازی را با الگوریتم های ژنتیک ترکیب می نماید. این سیستم بهینه سازی منبع،در دو مطالعه مورد بررسی قرار گرفته است. بنابراین این سیستم با نرم افزار تجاری مدیریت پروژه ادغام می‌شود و این امکان را فراهم می کند که کاربران مدلهای بهینه یافته GA را در هر سلسله مراتب پروژه تعریف شده کاربر بکار گیرند، به نحوی که زمان بندیهای ساخت بهینه شده منابع و زمان بندی های واقع گرایانه ایجاد شود.

زمان بندی سلسله مراتبی با بهینه سازی منبع

چون یک مدل همانندن سازی شده GA از یک عملکرد فردی در یک فایل میکروسافت گنجانده می‌شود ، آن می تواند به آسانی با هر طرح اصلی تعریف شده کاربر پیوند بخورد، به نحوی که بهینه سازی منبع در پروژه هایی با عملکرد چند گانه گنجانده شود. همانند ساختارهای تقلیل یافته ( خراب ) کاری گوناگون (WBS) ،عناصر یک پروژه می توانند با مدلهای همانندسازی بهینه یافته GA پیوند خورده ویک محیط طرح ریزی سلسله مراتبی را برقرار نمایند (شکل 7) این مراحل برای تولید یک طرح ساخت اصلی که بصورت زیر هستند : مورد نیاز می باشد :

(1) برای عملکردهای مهم و پرهزینه در پروژه تان ، مدلهای همانند سازی بهینه یافته GA فردی را حاصل نمایید. هر کدام در یک فایل پروژه میکروسافت ذخیره خواهند شد. هر کدام می تواند به عنوان یک زیر پروژه مورد ملاحظه قرار گیرد.

(2) یک WBS اصلی در نرم افزار زمان بندی ، همراه رابطه های فعالیت، منابع و تداوم ( دیرش زمان) همانطور اجرای سنتی، ایجاد نمایید ( جدول زمان بندی پس زمینه ای درشکل 7)

(3) از طریق فعالیتهای مناسب، پیوندهایی را در WBS برای فایل زیر پروژه های مربوطه شان فراهم نمایید، فایلهایی که مدل همانندی را در آنها گنجانده می‌شود.

(4) ماکروی GA را در هر زیر پروژه ساخته شده در مرحله(3) فعال نمایید( ضبط صفحه نمایش جلو (پیش نما) در شکل (7)) ، و همانندسازی بهینه یافته GA را اجرا کنید و ترکیب منبع بهینه، وتولید مربوطه آن ، هزینه و زمان را تعیین و مشخص نمایید. با استفاده از نتایج بهینه، دیرش فعالیت به نرم افزار زمان بعدی انتقال می یابد؛ و

(5) هنگامی که تمامی مدلهای بهینه شده GA فعال می شوند، یک طرح پروژه واقعی بنابراین به همراه سطحهای تولید مورد رضایت، هزینه حداقل ومنابع مناسب تعیین می‌گردد.
خلاصه و اظهارات نتیجه گیری

مدیریت منبع ،بواسطه پیچیدگی اساسی پروژه های ساختمان (ساخت) به مشکلات مربوط به الگوبرداری برهم کنش های پیچیده در ساخت، و محدودیتهای ابزارهای بهینه سازی سنتی برای پرداختن به مشکلات بزرگ، کاری بسیار دشوار می باشد.این مطالعه ، یک روش ساده وقدرتمند را برای مدیریت منبع وبهینه سازی را در پروژه های ساخت، با استفاده از یک ترکیب همانندسازی فلوچارت و الگوریتم های ژنتیک (Gas) نشان می دهد ( ارائه می دهد ) برای بهبود طرح ریزی ها و مدیریت منبع در پروژه های بزرگ با عملکردهای چندگانه، همانند سازی بهینه سازی GA، ادغام می شوند و یک سیستم سلسله مراتبی را تشکیل میدهد. در این روش ،عناصر پایین تر ساختار تقلیل یافته (خراب)کاری (عملکردهای ساخت انفرادی) ،ب طور خودکار به مدلهای همانندسازی بهینه یافته GA پیوند می خورند.

دو مثال در این مقاله نشان داده شدند ، که آنها قدرت و تنوع روشهای طرح ریزی همانند سازی بهینه یافته GA رانشان می دهند: جایگزینی ستونی عینی و عملیات خاکبرداری در فروردگاه بین المللی هنک کنگ. دو مثال تجزیه شدند و سودمندیهایی روش پیشنهاد شده را نشان دادند. نتایج نشان می دهد که همانندسازی ترکیب یافته و بهینه سازی شده GA می تواند تحقیق و بررسی شود و تعدادی منابع بهینه را که بهترین سودها / نسبتهای هزینه را حاصل می نمایندآشکار نماید.

چندین حیطه وجود دارند که درآن طرح ریزی همانندسازی بهینه سازی پیشنهاد شده GA می تواند توسعه یابد، این حیطه شامل موارد زیر می باشند:

· ادغام یافتن با یک سیستم برآورد هزینه و کتابخانه ، که یک برآورد بسیار کارآمد، خودکار شده وواقع بینانه ای از زمان و هزینه های مربوط به هر عملکرد و یا کار را فراهم می آورد، و همچنین ،می تواند دامنه متناوبها را برای انتخاب افزایش دهد،

· اصلاح فاکتورها می تواند به مدلهای همانندسازی افزوده شود واین امکان تاثیرپذیری را در طول عملیات چرخه در یک مدل فراهم می کند،

· برای اینکه این روش پیشنهاد شده بسیارواقع بینانه باشد،محدودیتهایی همانند عملکرد بشری(ترک کردن کار به خاطر مریضی، میزان تولید در پایان روز کاهش می‌یابد ..) و باید برای بررسی هایآینده مورد ملاحظه قرار گیرد و

· استفاده از روش پیشنهاد شده در عملیات طرح ریزی در شبکه های زیر ساخت بزرگ همانند جاده ها ، آب ،لوله کشی فاضلاب ، خطهای حمل و نقل، تعدادی توسعه ها مورد نیاز است، توسعه هایی هماندن ،ادغام یافتن با یک سیستم اطلاعات جغرافیایی و بهبود دادن زمان بعدی برای پرداختن به محلهای ساخت توزیع شده چندگانه وقدرت وسادگی روش پیشنهاد شده و اجرای خودکار شده آن، بطور امیدوار کننده های مدیریت طرح را تشویق خواهد کرد که آن در طرح ریزیهای پروژه های زیرساختی بزرگ مورد استفاده قرار گیرد. این روش می تواند برای فراهم آوردن تعدادی بهنیه ای از کمیتهای منبع، سیاستهای جایگزینی و بنابراین بهبود (بازده کلی بکار برده شود )

جهت دریافت فایل مقاله بهینه سازی منبع با استفاده از شبیه‌سازی ترکیب یافته و الگوریتم ژنتیک لطفا آن را خریداری نمایید