فلسفه هوش مصنوعی

این تحقیق در مورد فلسفه هوش مصنوعی در 35 صفحه و در قالب ورد می باشد
دسته بندی کامپیوتر و IT
بازدید ها 0
فرمت فایل docx
حجم فایل 281 کیلو بایت
تعداد صفحات فایل 35
فلسفه هوش مصنوعی

فروشنده فایل

کد کاربری 3177
کاربر

فلسفه هوش مصنوعی

هوش مصنوعی یا هوش ماشینی (به انگلیسی: Artificial Intelligence) هوش مصنوعی به هوشی که یک ماشین در شرایط مختلف از خود نشان می‌دهد، گفته می‌شود. به عبارت دیگر هوش مصنوعی به سیستم‌هایی گفته می‌شود که می‌توانند واکنش‌هایی مشابه رفتارهای هوشمند انسانی از جمله درک شرایط پیچیده، شبیه‌سازی فرایندهای تفکری و شیوه‌های استدلالی انسانی و پاسخ موفق به آنها، یادگیری و توانایی کسب دانش و استدلال برای حل مسایل را داشته باشند. بیشتر نوشته‌ها و مقاله‌های مربوط به هوش مصنوعی، آن را به عنوان «دانش شناخت و طراحی عامل‌های هوشمند

تعریف کرده‌اند.

هوش مصنوعی را باید عرصهٔ پهناور تلاقی و ملاقات بسیاری از دانش‌ها، علوم، و فنون قدیم و جدید دانست. ریشه‌ها و ایده‌های اصلی آن را باید در فلسفه،زبان‌شناسی، ریاضیات، روان‌شناسی، عصب‌شناسی، فیزیولوژی، تئوری کنترل، احتمالات و بهینه‌سازی جستجو کرد و کاربردهای گوناگون و فراوانی در علوم رایانه، علوم مهندسی، علوم زیست‌شناسی و پزشکی، علوم اجتماعی و بسیاری از علوم دیگر دارد.

از زبان‌های برنامه‌نویسی هوش مصنوعی می‌توان به لیسپ، پرولوگ، کلیپس و ویپی اکسپرت اشاره کرد.

یک «عامل هوشمند» سیستمی است که با شناخت محیط اطراف خود، شانس موفقیت خود را پس از تحلیل و بررسی افزایش می‌دهد.[۳] جان مکارتی که واژه هوش مصنوعی را در سال ۱۹۵۶۶ استفاده نمود، آن را «دانش و مهندسی ساخت ماشین‌های هوشمند» تعریف کرده‌است.

هوش مصنوعی در علم پزشکی امروزه به دلیل گسترش دانش و پیچیده‌تر شدن فرایند تصمیم‌گیری، استفاده از سیستم‌های اطلاعاتی به خصوص سیستم‌های هوش مصنوعی در تصمیم‌گیری، اهمیت بیشتری یافته است. هوش مصنوعی گسترش دانش در حوزهٔ پزشکی و پیچیدگی تصمیمات مرتبط با تشخیص و درمان - به عبارتی حیات انسان - توجه متخصصین را به استفاده از سیستم‌های پشتیبان تصمیم‌گیری در امور پزشکی جلب نموده است. به همین دلیل، استفاده از انواع مختلف سیستم‌های هوشمند در پزشکی رو به افزایش است، به گونه‌ای که امروزه تأثیر انواع سیستم‌های هوشمند در پزشکی مورد مطالعه قرار گرفته است.

تاریخچه

نمونه‌ای از مدل شبکه عصبی مصنوعی در مغز انسان

هوش مصنوعی توسط فلاسفه و ریاضی‌دانانی نظیر جرج بول که اقدام به ارائهٔ قوانین و نظریه‌هایی در مورد منطق نمودند، مطرح شده بود. با اختراع رایانه‌های الکترونیکی در سال ۱۹۴۳۳، هوش مصنوعی، دانشمندان آن زمان را به چالشی بزرگ فراخواند. دراین شرایط، چنین به‌نظر می‌رسید که این فناوری قادر به شبیه‌سازی رفتارهای هوشمندانه خواهد بود.

با وجود مخالفت گروهی از متفکّرین با هوش مصنوعی که با تردید به کارآمدی آن می‌نگریستند تنها پس از چهار دهه، شاهد تولد ماشینهای شطرنج باز و دیگرسامانه‌های هوشمند در صنایع گوناگون شدیم.

نام هوش مصنوعی در سال ۱۹۶۵ میلادی به عنوان یک دانش جدید ابداع گردید. البته فعالیت در این زمینه از سال ۱۹۶۰ میلادی شروع شد. (مرجع۱) بیشتر کارهای پژوهشی اولیه در هوش مصنوعی بر روی انجام ماشینی بازی‌ها و نیز اثبات قضیه‌های ریاضی با کمک رایانه‌ها بود. در آغاز چنین به نظر می‌آمد که رایانه‌ها قادر خواهند بود چنین فعالیت‌هایی را تنها با بهره گرفتن از تعداد بسیار زیادی کشف و جستجو برای مسیرهای حل مسئله و سپس انتخاب بهترین روش برای حل آن‌ها به انجام رسانند.

اصطلاح هوش مصنوعی برای اولین بار توسط جان مکارتی (که از آن به‌عنوان پدر علم و دانش تولید ماشین‌های هوشمند یاد می‌شود) استفاده شد. وی مخترع یکی از زبان‌های برنامه‌نویسی هوش مصنوعی به نام لیسپ (به انگلیسی: lisp) است. با این عنوان می‌توان به هویت رفتارهای هوشمندانه یک ابزار مصنوعی پی برد. (ساختهٔ دست بشر، غیرطبیعی، مصنوعی) حال آنکه هوش مصنوعی به عنوان یک اصطلاح عمومی پذیرفته شده که شامل محاسبات هوشمندانه و ترکیبی (مرکب از مواد مصنوعی) است.

از اصطلاح "Strong and Weak AI" می‌توان تا حدودی برای معرفی رده‌بندی سیستم‌ها استفاده کرد.

کاربردها

کاربردهای هوش مصنوعی چنان گسترده و فراگیر شده‌اند که بسیاری از این کاربردها دیگر با نام هوش مصنوعی شناخته نمی‌شوند و نام تخصصی خود را دارند. تأثیر هوش مصنوعی را اکنون می‌توان در همه جهات و نقاط زندگی مردم دید. آیفونی که قادر به تشخیص اعضای خانه است یا تلویزیونی که نور صفحه نمایش دلخواه را با تعداد افراد تنظیم می‌کند، همه و همه کاربردهای هوش مصنوعی هستند.

کاربردهای عملی آن دسته از کاربردهای هوش مصنوعی هستند که عملیات خاصی را انجام داده و عمل یا تأثیر آن به وضوح توسط کاربر احساس خواهد شد. برای مثال جست و جوی خودکار گوگل که از الگوریتم‌ها و متدهای پیچیده هوش مصنوعی استفاده می‌کند، پس از انجام یک عملیات پرهزینه و البته سریع نتایج مرتبط را به شما نشان خواهد داد. ماشین‌هایی که قادر هستند خودشان را کنترل کنند. ربات‌های پرنده و یا قایق‌های هوشمند نمونه‌ای بارز و موفق از این نوع کاربردها هستند.

نیاز به تحلیل و استخراج الگو از داده‌های ترافیک شهری، دریافتی کارکنان و جابه جایی پول در یک بانک برای جلوگیری از اختلاس یک عملیات نیست و تأثیر یا خود عمل به وضوح توسط کاربر لمس نخواهد شد؛ اما در مقابل یک تحلیل هوشمند و خودکار است که کاربرد تحلیلی هوش مصنوعی به حساب می‌آید.

آزمون تورینگ

آزمون تورینگ[۴] آزمونی است که توسط آلن تورینگ در سال ۱۹۵۰ در نوشته‌ای به نام «محاسبات ماشینی و هوشمندی» مطرح شد. در این آزمون شرایطی فراهم می‌شود که شخصی با ماشینی تعامل برقرار کند و پرسش‌های کافی برای بررسی اقدامات هوشمندانهٔ ماشین، از آن بپرسد. چنانچه در پایان آزمایش نتواند تشخیص دهد که با انسان و یا با ماشین در تعامل بوده است، آزمون با موفقیت انجام شده است. تا کنون هیچ ماشینی از این آزمون با موفقیت بیرون نیامده است. کوشش این آزمون برای تشخیص درستی هوشمندی یک سیستم است که سعی در شبیه‌سازی انسان دارد.

تعریف و طبیعت هوش مصنوعی

هنوز تعریف دقیقی برای هوش مصنوعی که مورد توافق دانشمندان این علم باشد ارائه نشده‌است و این به هیچ وجه مایهٔ تعجب نیست. چرا که مقولهٔ مادر و اساسی‌تر از آن، یعنی خود هوش هم هنوز بطور همه‌جانبه و فراگیر تن به تعریف نداده‌است. در واقع می‌توان نسل‌هایی از دانشمندان را سراغ گرفت که تمام دوران زندگی خود را صرف مطالعه و تلاش در راه یافتن جوابی به این سؤال عمده نموده‌اند که: هوش چیست؟

اما اکثر تعریف‌هایی که در این زمینه ارایه شده‌اند بر پایه یکی از ۴ باور زیر قرار می‌گیرند:

    1. سیستم‌هایی که به طور منطقی فکر می‌کنند
    2. سیستم‌هایی که به طور منطقی عمل می‌کنند
    3. سیستم‌هایی که مانند انسان فکر می‌کنند
    4. سیستم‌هایی که مانند انسان عمل می‌کنند

شاید بتوان هوش مصنوعی را این گونه توصیف کرد: «هوش مصنوعی عبارت است از مطالعه این که چگونه کامپیوترها را می‌توان وادار به کارهایی کرد که در حال حاضر انسان‌ها آنها را صحیح یا بهتر انجام می‌دهند» هوش مصنوعی به هوشی که یک ماشین از خود نشان می‌دهد و یا به دانشی در کامپیوتر که سعی در ایجاد آن دارد گفته می‌شود. بیشتر نوشته‌ها و مقاله‌های مربوط به هوش مصنوعی آن را «دانش شناخت و طراحی عامل‌های هوشمند» تعریف کرده‌اند. یک عامل هوشمند، سیستمی است که با شناخت محیط اطراف خود، شانس موفقیت خود را بالا می‌برد.

اینکه هوش مصنوعی چیست و چه تعریفی می‌توان از آن بیان نمود؟ مبحثی است که تاکنون دانشمندان به یک تعریف جامع در آن نرسیده‌اند و هریک تعریفی را ارائه نموده‌اند که در زیر نمونه‌ای از این تعاریف آمده‌است.

    • هنر ایجاد ماشینهایی که وظایفی را انجام می‌دهند که انجام آنها توسط انسانها نیاز به هوش دارد (کورزویل- ۱۹۹۰)
    • مطالعهٔ استعدادهای ذهنی از طیق مدل‌های محاسباتی (کارنیاک و مک درموت - ۱۹۸۵)
    • مطالعهٔ اینکه چگونه کامپیوترها را قادر به انجام اعمالی کنیم که در حال حاضر، انسان آن اعمال را بهتر انجام می‌دهد. (ریچ و نایت -۱۹۹۱)
    • خودکارسازی فعالیت‌هایی که ما آنها را به تفکر انسانی نسبت می‌دهیم. فعالیت‌هایی مثل تصمیم‌گیری، حل مسئله، یادگیری و … (بلمن -۱۹۷۸)
    • تلاشی نو و مهیج برای اینکه کامپیوترها را قادر به فکر کردن کنیم. ماشین‌هایی با فکر و حس تشخیص واقعی (هاگلند-۱۹۸۵)
    • یک زمینهٔ تخصصی که به دنبال توضیح و شبیه‌سازی رفتار هوشمندانه بوسیله فرایندهای کامپیوتری است. (شالکوف -۱۹۹۰)
    • مطالعه محاسباتی که درک، استدلال و عمل کردن را توسط ماشین‌ها را ممکن می‌سازد. (وینستون - ۱۹۹۲)
    • توانایی دست یافتن به کارایی در حد انسان در همهٔ امور شناختی توسط رایانه (آلن تورینگ – ۱۹۵۰)
    • هوش مصنوعی دانش و مهندسی ساخت ماشین‌های هوشمند و به خصوص برنامه‌های رایانه‌ای هوشمند است. هوش مصنوعی با وظیفه مشابه استفاده از کامپیوترها برای فهم چگونگی هوش انسان مرتبط است، اما مجبور نیست خودش را به روش‌هایی محدود کند که بیولوژیکی باشند. (جان مک کارتی – ۱۹۸۰)
    • هوش مصنوعی علم طراحی سیستم‌هایی رایانه‌ای ویا الکترونیکی است که تلاش می‌نماید تا رفتار انسان گونه را بازسازی نماید." به عبارت دیگر: هوش مصنوعی علم و مهندسی ایجاد ماشین‌هایی با هوش با به کارگیری از کامپیوتر و الگوگیری از درک هوش انسانی و یا حیوانی و نهایتاً دستیابی به مکانیزم هوش مصنوعی در سطح هوش انسانی می‌باشد. (مسعود مولوی-۲۰۰۶)

هوشمندی مفهومی نسبی دارد و نمی‌توان محدوده صحیحی را برای ارائه تعریف از آن مشخص نمود. رفتاری که از نظر یک فرد هوشمند به نظر می‌رسد؛ ممکن است برای یک فرد دیگر اینگونه به نظر نرسد. اما در مجموع خصوصیات زیر قابلیت‌های ضروری برای هوشمندی است:

    • پاسخ به موقعیت‌های از قبل تعریف نشده با انعطاف بسیار بالا و بر اساس بانک دانش
    • معنا دادن به پیام‌های نادرست یا مبهم
    • درک تمایزها و شباهت‌ها
    • تجزیه و تحلیل اطلاعات و نتیجه‌گیری
    • توانمندی آموختن و یادگرفتن
    • برقراری ارتباط دوطرفه

به فرض اینکه تعاریف بالا را از هوشمندی بپذیریم، موارد زیر فهرستی است از وظایفی که از یک سیستم هوشمند انتظار می‌رود و تقریباً اکثر دانشمندان هوش مصنوعی بر آن توافق نظر دارند به شرح زیر است:

    • تولید گفتار
    • تشخیص و درک گفتار (پردازش زبان طبیعی انسان)
    • دستور پذیری و قابلیت انجام اعمال فیزیکی در محیط طبیعی و مجازی
    • استنتاج و استدلال
    • تشخیص الگو و بازشناسی الگو برای پاسخ گویی به مسائل بر اساس دانش قبلی
    • شمایلی گرافیکی و یا فیزیکی جهت ابراز احساسات و عکس العمل‌های ظریف
    • سرعت عکس العمل بالا
فلسفه هوش مصنوعی

نوشتار اصلی: فلسفه هوش مصنوعی

بطور کلی ماهیت وجودی هوش به مفهوم جمع‌آوری اطلاعات، استقراء و تحلیل تجربیات به منظور رسیدن به دانش و یا ارایه تصمیم است. در واقع هوش به مفهوم به کارگیری تجربه به منظور حل مسائل دریافت شده تلقی می‌شود. هوش مصنوعی علم و مهندسی ایجاد ماشین‌هایی هوشمند با به کارگیری از کامپیوتر و الگوگیری از درک هوش انسانی و یا حیوانی و نهایتاً دستیابی به مکانیزم هوش مصنوعی در سطح هوش انسانی است.

در مقایسهٔ هوش مصنوعی با هوش انسانی می‌توان گفت که انسان قادر به مشاهده و تجزیه و تحلیل مسایل در جهت قضاوت و اخذ تصمیم است در حالی که هوش مصنوعی مبتنی بر قوانین و رویه‌هایی از قبل تعبیه شده بر روی کامپیوتر است. در نتیجه علی‌رغم وجود کامپیوترهای بسیار کارا و قوی در عصر حاضر ما هنوز قادر به پیاده کردن هوشی نزدیک به هوش انسان در ایجاد هوش‌های مصنوعی نبوده‌ایم.

بطور کلّی، هوش مصنوعی را می‌توان از زوایای متفاوتی مورد بررسی و مطالعه قرار داد. مابین هوش مصنوعی به عنوان یک هدف، هوش مصنوعی به عنوان یک رشتهٔ تحصیلی دانشگاهی، و یا هوش مصنوعی به عنوان مجموعهٔ فنون و راه کارهایی که توسط مراکز علمی مختلف و صنایع گوناگون تنظیم و توسعه یافته‌است باید تفاوت قائل بود.

اتاق چینی

اتاق چینی بحثی است که توسط جان سیرل در ۱۹۸۰ مطرح شد در این راستا که یک ماشین نمادگرا هرگز نمی‌تواند دارای ویژگی‌هایی مانند مغز و یا فهمیدن باشد. صرف نظر از اینکه چقدر از خود هوشمندی نشان دهد.

مدیریت پیچیدگی

ایجاد و ابداع فنون و تکنیک‌های لازم برای مدیریت پیچیدگی را باید به عنوان هستهٔ بنیادین تلاش‌های علمی و پژوهشی گذشته، حال و آینده در تمامی زمینه‌های علوم رایانه و به ویژه در هوش مصنوعی معرفی کرد. شیوه‌ها و تکنیک‌های هوش مصنوعی در واقع، برای حل آن دسته از مسائل به وجود آمده‌است که به طور سهل و آسان توسط برنامه‌نویسی تابعی یا شیوه‌های ریاضی قابل حلّ نبوده‌اند.

در بسیاری از موارد، با پوشانیدن و پنهان ساختن جزئیّات فاقد اهمیت است که بر پیچیدگی فائق می‌آییم و می‌توانیم بر روی بخش‌هایی از مسئله متمرکز شویم که مهم‌تر است. تلاش اصلی در واقع، ایجاد و دستیابی به لایه‌ها و ترازهای بالاتر از هوشمندی انتزاع را نشانه می‌رود تا آنجا که سرانجام، برنامه‌های کامپیوتری درست در همان سطحی کار خواهند کرد که خود انسان‌ها رسیده‌اند.

به یاری پژوهش‌های گستردهٔ دانشمندان علوم مرتبط، هوش مصنوعی تاکنون راه بسیاری پیموده‌است. در این راستا، تحقیقاتی که بر روی توانایی آموختن زبان‌ها انجام گرفت و همچنین درک عمیق از احساسات، دانشمندان را در پیشبرد این دانش کمک زیادی کرده‌است. یکی از اهداف متخصصین، تولید ماشینهایی است که دارای احساسات بوده و دست کم نسبت به وجود خود و احساسات خود آگاه باشند. این ماشین باید توانایی تعمیم تجربیات قدیمی خود در شرایط مشابه جدید را داشته و به این ترتیب اقدام به گسترش دامنه دانش و تجربیاتش کند.

برای نمونه ربات هوشمندی که بتواند اعضای بدن خود را به حرکت درآورد، نسبت به این حرکت خود آگاه بوده و با آزمون و خطا، دامنه حرکت خود را گسترش می‌دهد و با هر حرکت موفقیت آمیز یا اشتباه، دامنه تجربیات خود را وسعت بخشیده و سر انجام راه رفته و یا حتی می‌دود و یا به روشی برای جابجا شدن دست می‌یابد که سازندگانش برای او متصور نبوده‌اند.

هر چند نمونه بالا ممکن است کمی آرمانی به نظر برسد، ولی به هیچ عنوان دور از دسترس نیست. دانشمندان عموماً برای تولید چنین ماشینهایی از وجود مدلهای زنده‌ای که در طبیعت وجود به ویژه آدم


مقاله تکنیک ها و زبان برنامه نویسی هوش مصنوعی

در این مقاله درباره تکنیک ها و زبان های برنامه نویسی هوش مصنوعی توضیح داده شده تعداد صفحات آن 34 می باشد و دارای فهرست است
دسته بندی هوش مصنوعی
بازدید ها 13
فرمت فایل doc
حجم فایل 124 کیلو بایت
تعداد صفحات فایل 34
مقاله تکنیک ها و زبان برنامه نویسی هوش مصنوعی

فروشنده فایل

کد کاربری 25253
کاربر

مقاله تکنیک ها و زبان برنامه نویسی هوش مصنوعی


این مقاله در 34 صفحه تهیه وتنظیم شده است .


فهرست :

مقدمه

زبان، شناخت و خلاصه پردازی

خلاصه پردازی طبقه بندی شده (سلسله مراتبی )

خصوصیات مطلوب یک زبان AI

پشتیبانی از محاسبات سمبولیک

انعطاف پذیر بودن کنترل:

پشتیبانی از روش های برنامه نویسی جستجویی

تعاریف مشخص و واضح

خلاصه ای دربارة LISP و PROLOG

PROLOG

LISP

- برنامه نویسی شیء گرا

محیط های هیبرید

زبانهای برنامه نویسی هوش مصنوعی

سایر روش های برنامه نویسی

مقدمه

ما در عصری زندگی می کنیم که جامعه شناسان آن را عصر انقلاب کامپیوتر نام نهاده اند و مانند هر انقلاب واقعی دیگر، انقلابی است گسترده و فراگیر و تأثیر پایداری برجامعه خواهد داشت. این انقلاب در اقتصاد امروز و نظم جامعه، به همان میزان انقلاب صنعتی در قرن 19 تأثیر دارداین تحولات قادر است الگوی فکری و فرم زندگی هر فرد را تغییر دهد. انقلاب کامپیوتر توان ذهنی ما را گسترش می دهد.

عملکرد اولیة برنامه نویسی هوش مصنوعی (AI) ایجاد ساختار کنترلی مورد لزوم برای محاسبه سمبولیک است خصوصیات این ساختارها به مقدار زیادی موجب تشخیص خصوصیاتی می شود که یک زبان کاربردی می بایستی فراهم کند.

در این مقدمه به یک سری خصوصیات مورد نظر برای زبان برنامه نویسی سمبولیک می پردازیم و زبانهای برنامه نویسی LISP و PROLOG را معرفی خواهیم کرد. این دو زبان علاوه بر این که از مهمترین زبانهای مورد استفاده در هوش مصنوعی هستند، خصوصیات semantic و syntactic آنها نیز باعث شده که آنها شیوه ها و راه حل های قوی برای حل مسئله ارئه کنند.

تأثیر قابل توجه این زبانها بر روی توسعه AI از جمله توانائی آنها به عنوان «ابزارهای فکر کردن» می باشد که از جمله نقاط قوت آنها در زبانهای برنامه نویسی می باشد. همان طور که هوش مصنوعی مراحل رشد خود را طی می کند زبانهای LISP و PROLOG بیشتر مطرح می شوند.

این زبانها کار خود را در محدودة توسعه و prototype سازی سیستم های AI در صنعت و دانشگاهها دنبال می کنند. اطلاعات در مورد این زبانها به عنوان بخشی از مهارت هر برنامه نویس AI می باشد ما به بررسی این دو زبان در هوش مصنوعی می پردازیم.


رابطه هوش مصنوعی، معادله مارکوف، ژنتیک و منطق فازی

فهرست مطالب عنوان صفحه مقدمه 1 فصل اول کلیت تحقیق 11 هوش مصنوعی چیست؟ 3 111 آزمون تورینگ 4 12 منطق فازی 4 121 بازتابی از منطق فازی 4 122 سیستم های فازی 5 123 تصمیم گیری فازی 6 124 هوش مصنوعی و رباتیک 6 13 مدلهای مخفی مارکوف 6 1 31 معرفی مدلها
دسته بندی هوش مصنوعی
بازدید ها 0
فرمت فایل pdf
حجم فایل 3530 کیلو بایت
تعداد صفحات فایل 160
رابطه هوش مصنوعی، معادله مارکوف، ژنتیک و منطق فازی

فروشنده فایل

کد کاربری 26390
کاربر

چکیده

انسان ها از آغاز خلقت به دنبال یکی از هزاران گمشده های خود یعنی آسایش بوده اند و هستند و به همین دلیل تلاش خود را بر آن داشتند تا با پیشرفت روز به روزی در علم، و با تبدیل کردنش به تکنولوژی ، آن را به خدمت خود در بیاورند و هرچه بیشتر خود را غرق در آرامش و راحتی ببینند و به همین دلیل دست به طراحی وسایل گوناگون با طرح ها و ویژگی های متفاوت زدند و این روند تا آنجا پیشرفت که تصمیم گرفتند ، انسان جای خود را به تکنولوژی بدهد اما خیلی زود متوجه شدند ،تکنولوژیی که می خواهد جای انسان را تا حدی پر کند فاقد مهم ترین ویژگی انسان است و آن قدرت تصمیم گیری و انتخاب هوشمندانه است و از آن موقع بود که شاخه جدیدی در علم کامپیوتر و الکترونیک به نام هوش مصنوعی پدید آمد و در اواخر قرن بیستم بود که به یک بحث و موضوع مهم تبدیل شد و تا امروز که در قرن بیست و یکم قرار داریم ادامه دارد و روز به روز تکمیل تر می شود. هوش مصنوعی، یک رشته از علم کامپیوتر می‌باشد که طراحی و توسعه سیستم‌های کامپیوتری را مورد مطالعه قرار می‌دهد که از هوش انسان، تقلید می‌کنند.

هنوز تعریف دقیقی که مورد قبول همه دانشمندان این علم باشد برای هوش مصنوعی ارائه نشده است و این امر به هیچ وجه مایه تعجب نیست؛ چرا که مقوله مادر و اساسی تر از آن یعنی خود هوش هم هنوز به طور همه جانبه و فراگیر تن به تعریف نداده است.

الگوریتم ژنتیک (Genetic Algorithm - GA) تکنیک جستجویی در علم رایانه برای یافتن راه‌حل تقریبی برای بهینه‌سازی و مسائل جستجو است. الگوریتم ژنتیک نوع خاصی از الگوریتم‌های تکامل است که از تکنیک‌های زیست‌شناسی فرگشتی مانند وراثت و جهش استفاده می‌کند.

پرفسور لطفی زاده در سال ۱۹۶۵ برای اولین بار با معرفی نظریه مجموعه های فازی مقدمات مدل سازی اطلاعات نادقیق و استدلال تقریبی با معادله های ریاضی را فراهم نمود که در نوع خود تحولی عظیم در ریاضیات و منطق کلاسیک بوجود آورد. لذا نظریه فازی برای بیان و تشریح عدم قطعیت و عدم دقت در رویدادها به کار می رود که براساس منطق چند ارزشی بوجود آمده است.

مدل مخفی مارکوف در اواخر دهه 1960 میلادی معرفی گردید و در حال حاضر به سرعت در حال گسترش دامنه کاربردها می باشد. دو دلیل مهم برای این مساله وجود دارد. اول اینکه این مدل از لحاظ ساختار ریاضی بسیار قدرتمند است و به همین دلیل مبانی نظری بسیاری از کاربردها را شکل داده است. دوم اینکه مدل مخفی مارکوف اگر به صورت مناسبی ایجاد شود می تواند برای کاربردهای بسیاری مورد استفاده قرار گیرد.